Fast Methods for Computing Selected Elements of the Green's Function in Massively Parallel Nanoelectronic Device Simulations
نویسندگان
چکیده
The central computation in atomistic, quantum transport simulation consists in solving the Schrödinger equation several thousand times with non-equilibrium Green’s function (NEGF) equations. In the NEGF formalism, a numerical linear algebra problem is identified related to the computation of a sparse inverse subset of general sparse unsymmetric matrices. The computational challenge consists in computing all the diagonal entries of the Green’s functions, which represent the inverse of the electron Hamiltonian matrix. Parallel upward and downward traversals of the elimination tree are used to perform these computations very efficiently and reduce the overall simulation time for realistic nanoelectronic devices. Extensive large-scale numerical experiments on the CRAY-XE6 Monte Rosa at the Swiss National Supercomputing Center and on the BG/Q at the Argonne Leadership Computing Facility are presented.
منابع مشابه
Electronic Transmission Wave Function of Disordered Graphene by Direct Method and Green's Function Method
We describe how to obtain electronic transport properties of disordered graphene, including the tight binding model and nearest neighbor hopping. We present a new method for computing, electronic transport wave function and Greens function of the disordered Graphene. In this method, based on the small rectangular approximation, break up the potential barriers in to small parts. Then using the f...
متن کاملGreen Energy-aware task scheduling using the DVFS technique in Cloud Computing
Nowdays, energy consumption as a critical issue in distributed computing systems with high performance has become so green computing tries to energy consumption, carbon footprint and CO2 emissions in high performance computing systems (HPCs) such as clusters, Grid and Cloud that a large number of parallel. Reducing energy consumption for high end computing can bring various benefits such as red...
متن کاملترابرد در دیودهای تونلزنی تشدیدی نقطه کوانتومی در رژیم غیربرهمکنشی
In this paper, we used green's function approach in microscopic theory to investigate a resonant tunneling diode (RTD). We introduced the detailed Hamiltonian for each part of the photovoltaic p-i-n system, then by calculating the green's function components in tight-binding approximation, we calculate local density of states and current-voltage characteristic of the p-i-n structure. Our result...
متن کاملA Mobile and Fog-based Computing Method to Execute Smart Device Applications in a Secure Environment
With the rapid growth of smart device and Internet of things applications, the volume of communication and data in networks have increased. Due to the network lag and massive demands, centralized and traditional cloud computing architecture are not accountable to the high users' demands and not proper for execution of delay-sensitive and real time applications. To resolve these challenges, we p...
متن کاملInfluences of Small-Scale Effect and Boundary Conditions on the Free Vibration of Nano-Plates: A Molecular Dynamics Simulation
This paper addresses the influence of boundary conditions and small-scale effect on the free vibration of nano-plates using molecular dynamics (MD) and nonlocal elasticity theory. Based on the MD simulations, Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) is used to obtain fundamental frequencies of single layered graphene sheets (SLGSs) which modeled in this paper as the mo...
متن کامل